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In this paper we 8hall propose an approximate model of uniformly expanding
layers which, under certain conditions, reduces three-dimedbional unsteady
flow problem to certain one- or two-dimensional problems.

Consider the expansion into a vacuum of a gas Jet in which the kinetic
energy of the particles 1s large in comparison with the gas internal energy.
Let the initial flow in the jet be one-dimensional (with plane or cylindrical
waves) and assume that the distribution of velocity, density and pressure
along the axis of the jet is given. When the energy ratio 1s as assumed above,
the subsequent decay of pressure to zero will have 1lttle effect on the velo-
city of the particles in the direction of the initilal motion. Only the transverse
expansion of the Jet will be significant. Thus it is natural to make the
following simplifying assumption: from a certain instant of time ¢4 on,
the gas particles move under their own momentum and each particle conserves
its velocity.

Under this assumption, consecutive layers of particles in the Jjet do not
interact with each other and their motions are independent. Thus 1t is suf-
ficlent to solve the problem of the expansion of & gas in ar infinitely thin
layer cut out. from the jJet. In this case the pressure and the density dis-
tribution across the layer will be equalized instantaneously and the velocity
distribution across the layer will be linear. Such a layer expands uniformly.

1. The system of coordinates for a two-dimensional uniformly expanding
laycr 1s given in Fig. 1. In view of the assumption made above, we have

du du _ dp ap dv _ ow

Gy 9 0z 9w or oz 0 (M

Without loss of generality, one of the bound-
ing planes of the layer can be the statlonary
plane x = O . Let the other plane move in
the x direction with the velocity us and
let its position at ¢t = O be x = !. Under
the present assumptions, the particles of the
layer move 1n the x direction under their
own momentum. The velocity gradient 1in the
x direction 1s then

du uop _ 1
Fig. 1 oxr 14 ugt t4+o’

0=-— (1.2)
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The veloclty cof the particles in the layer
T

t4+ o

Thus the u component of velocity is specified. This leads to a signi-
ficant simplificatlion of the three-dimensional unsteady adiabatic flow equa-
tions. The equations of motion and the adlabatic condition will be the same
as for two-dimensional flow (in the yz plane)

_1op 1 dp
Gttt =" ooy a¢+”ay+waz—"paz

u=

(1.3)

(1.4)

and the equation of continuity differs from that for two-dimensional flow
only by the presence of a time-dependent term
1

Bt o)ttt

The system of coordinates for a cylindrical uniformly expanding layer is
shown 1n Flg.2. The surface of the inner cylinder
has an 1lnltial radius x, and .expands with the
velocity u, . The corresponding values for the
outer cylinder are x, and u; . We shall consi-
der only one-dimensional flows in the layer, for
which the v veloclty is parallel to the genera-
trix of the cylinder. Purthermore, let us restrict
the law of expansion of the layer by imposing the
additional condition

=0 (1.5)

—=—=——" = (1.6)

w _ o _op_u_
Fig. 2 % "0z 9 or O 26 —0 (1.7

The u Veloclity of inertial flow in cylindrical
expansion, which satisfles the boundary conditions u=u, at x=x,+ u,t ,
Umy, at x= x;+uzt and condition (1.6) 1is

x

“=3Te (1.8)

In the case of one-dimensional flow in the directlon of the r-axis in a
uniformly expanding layer, the equation of motion and the adiabatic condition
are the same as in the case of flow with plane waves, and the equation of
continuity 1s

2

1 7dp dp v
B‘(W"’”T??)"‘F"*“—“:er =0 (1.9)
The equations of one-dimensional adiabatic gas flow in a uniformly expand-
ing layer can be written in the general form
v v 1 ép d p

a_z+”'5?+"§5r—

4 p
=0, 75—}5’*’”?57}F'==0
ap» . (1.10)
+ +(v—1)——+ PiTe =0
Here v = 1, 2 stands for flows with plane and cylindrical waves, and
A =1, 2 for flows in plane and cylindrical layers, respectiyely.
The cases in which these equatlons can be solved are the following:

a) Monatomilc gas, y=°%/, . This case can be solved by
means of the transformation [1 and 2]}
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g — =t =0t . y
T=aTYg WS iIgy §S7=gs VETp Ty

. t—d z L b s , b8

YTy T P“(t-d)"' p=(t:d)P
which 1s an invariant transformation for three-dimensional unsteady gas
flows., One can easily verify that for d = —w transformation (1.11)

transforms Equations {(1.%4) and (1.5) and Equations (1.10) with v =1, A =2
into the egquations of two- and one-dimensional gas flow, respectlvely.

Thus, transformation (1.11) can be used to transform any solution for
two~-dimensional unsteady flow with y = %/, into a solution for a uniformly
expanding plane layer and any one~dimensional plane-wave solutlion into a one-
dimenslional flow in a cylindrical uniformly expanding layer.

b) Flow with velocity proportionatl t o
a coordinate [3] . It can be easily verified that

(1.11)

L A+B L
= s = ry} ——te—
o1 ' p3Hvr-1 (142}

2
p=——(t+ )¢ (ur), = T B o

which 1s analogous to L.I.Sedov's solution [3], is an exact sclution of (130).

Here (ur) is an arbitrary function and 4, B are arbltrary constants.
Solution ?1.12) is a special case of L.V.Ovslannikov's solution [4], in which
the velocity components are proportional to the corresponding coordinates.

c) Isothermal flow of & gas , y=1. Inthls
case Equations (1.4}, (1.5) or {1.10) can be trnsformed by means of the
transformation Y Y

p=p @+, p=p (t+ o) (1.13)
into the ordinary equations of two- or one~dimensional isothermal gas flow.

Note that Equations (1.10) contaln a parameter o with the dimension of
time, so that self-similar solutions cannot be generalized for the case of
a uniformly expanding layer.

m

2. In the following we shall conslder the solutions for certaln expansion
flows in a uniformly expanding layer.

Consider an expansion flow in which the velocity is proportional to the
coordinate {3]. In the cagse of cylindrical symmetry with p/pY = const and
vy = 5/, this solution is [6€]

1 dR 3 - 1 1 2\
i —— 78 o e p? o —
Y =F@ & =4 Ve VR Lem™ P mm (1 Rﬁ) (2.4)

Here we have introduced the dimensionless variables and Punctlons {(*)

1’1y s ro’ - vy’ . po'
1T = P = = o] o (2.2)
where g¢,°, p,’ are the velocity of sound and the density at 7 = 0, r'=0;
r,’ is the radius of the volume occupied by the gas at the time T = 0 .
The plus and minus signs 1n (2.1) correspond to expanding and converging
flow, respectively. The function R(T) for y =%/, 1s given in [5]({rig.
102, v = 2). Some values of R are

T=0 0.04 047 0.45 0.6 1.0 2.0
R =1.0 1.002 1.04 1.28 1.47 2.08 3.92

Let us introduce the dimensionless variables for a uniformly expanding
flow

*)  From here on the subscript o shall denote the dimensilonal variables
which enter (1.11).
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= Gb =T = =P
n o T y VE a' P ‘—H (2.3)

Here ¢,, p, are the veloclity of sound and the density at ¢ = 0 , © = 0;
r, is the radius of the volume occupled by the gas at ¢ = O .,

The transformation formulas (1.11) for the dimensionless variables (2.2)
and (2.3) are

b? ,_ b r _ mb r mb \8 |
T=e 3y "Twmirr *Tirel tire P=(t+k)" (2.4)

where k = we,/r, 1s a known constant, and @, b, m are arbitrary constants
*

Solution (2.1), transformed for the case of a uniformly expanding layer,
1s
_[ 1 i( b f 3 VR%—1
s = Etlere) yrooa
mb \3 1 1 b \2r27h 2
'N””=(HJ)E?P_ET&+k)FJ’ R=R“F”Na—t+k)

Consider, for the case of a uniformly expanding layer, the solution which
corresponds to the initial condltlons

(2.5)

v(r,0) =0, p (1,0 =0, p(0,0) =1 (2.6)
Substitution of (2.5) into the first condition in (2.6) yields
3 by b2
iﬁTVﬂos—1+Ro“==o, Ho=(R)¢=0=R(a——k—) @.7)

This condition can be satisfied only 1f the first term 1s taken with the
minus sign. Consequently, this sign should be taken in Equations (2.1) and
(2.5). This means that the initial flow (2.1) represents a flow which con-
verges towards the axls of symmetry.

The second and third condition in (2.6) lead to the relations
b [ m2ERR2 = 1, (mb [ k)® = Ry? (2.8)
Equations (2.7),{(2.8) determine the relation between the constants n ,
b, Ry and the parameter % , viz.
2 \-Y 2 \* 2 \¥
m=(1+m—{> ) b:k(l—’rm) ) Ro=(1+m). (2.9)

Using the relation RA(7) one can find [5] the value T, which corresponds
to Ro, and the value (*¥%)
b2 2 \*%
a=‘l.‘o+T=To+k(1+'9—]"T) (2.10)

The following are some values of a(%) caleculated for 0<k <<1.3:

*) If we designate the constants in transformation (1.11) by the subscript

¢} then ’ , .
’ X aidp 0 b ( c1c1 )‘/: b ( riey’ \Ye
= — — a=—a = ; m=
ry ’ r’ 0 rr 0 \ T101

In real cases one can specify only the parameters g¢,, ™, and w = — d,
of the flow in a uniformly expanding layer. The parameters of the initial
two-dimensional flow ¢,’, 7, which undergoes the trnasformation, are arbi-
trary, and so are the parameters a,, Y, of transformation (1.11).

*¥) As the initlal condition represents a converging flow, the varilable T,
should be taken with the minus sign.
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k=0 0.05 0.1 0.2 0.3 0.5 1.0 1.3
a = — 0634 —0.315 —0.17 0.013 0.154 0.4 0.95 1.27

Thus, the expansion flow of a gas in a uniformly expanding two-dimensio
layer, which satisfies initial conditions (2,6) 1s determined from Equations
(2.5) with the minus sign and % = we,/r; , and with the constants a, b
given by Equations (2.9§?(2.10).

The one-dimensional plane-wave flow for p/p* = const, y = 5/,. with velo-
city proportional to the coordinate 1s [3 and 6}
1 4R, 174 DYs 4 4 , PP 7A
by i1 y i1 1 1 “° !

v = =3 el (R
B@ & ="%  pm " P Tmar T RE) @4

The function R,{T) for_ vy =%/, 1is given in [5] (Fig.102, v = 1) and can
be written in the form [6]

Rl’/s B, Sy S
v=+ 2"V R% (2.12)
Equations (2.2) to (2.4) hold for this case. The parameter
k=mza/rimm=0a/n (2.13)
Solution (2.11), transformed for a uniformly expanding layer, is
1 b 2 3 o
v(r, t)=[t+k__(t+k> Rla/,VRl/s_.i}r (2.14)

mb \8 1 1 b 2 r2 P b2
p(r t)=(t—{—k) 7:7[“52‘(7@) T] ' RI=HI<T>=RI(G—m)
Consider the uniformly ecxpanding layer solution which satisfies the ini-
tial conditions
2(r,0)=0, p(1,00=0, p(0,0) =1 (2.15)
According to (2.14) these conditions are
32V Rl — 4 = kR, 8= mPkER?, m3b3 = k3Ryo
respectively.

These equations determine the relation between the constants m , b, Ry
and the parameter &

m= (1 + 9—;2—)"‘/’, b=k (1 + g}g) . Ru— (1 + 51_2) (2.16)

In this case T, 18 given by (2.12) as an expliclt function of Ry, and,
consequently, it is an explicit func-

tion of &k , viz.

£ D
211
AT T T 3k TR
1
a(h) =k — 5 (217

Thus, the expansion flow of a gas
in a uniformly expanding cylindrical

e A layer with y = ®/, and initial con-
ditions (2.15) is determined by Equa-
Fig. 3 tions (2.142 and relations (2.13),
(2.16) and (2.17).

3. A characteristic feature of gas expansion into a vacuum is the rapid
conversion of potential energy into kinetic energy of the particles.

In the case of many asymmetric volumes the initlal stages of the expansion
are sufficiently simple and can be calculated. Thus, if a portion of the
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surface of the volume is a plane (parallelepiped, disk, filnite cone, etc.),

then the initial stage of the expanslion of that part of the volume which

ad joins that surface is a one-dimensional plane-wave flow, which 1s subse-

quently eroded due to the effect of the boundaries of the plane surface., If

a part of the surface 1is a circular cylinder or a sphere, then the initial

stage of the expansion of the adjoining part of the volume is the correspond-
ing one-dimenslonal flow with cylin-
drical or spherical symmetry.

a8 i Fig.3 represents the initial stage

of an expansion flow. This pattern

/ can be regarded as the upper half of

P the flow in a meridlonal cross-section
= of a disk or in a diametral cross-

section of a circular cylinder. The
shaded area represents the initial
volume, occupled by the gas.

3 The part A4BDE repesents a one-
s dimensional Jet, wlth plane waves in
-~"‘"-\~~_7 the case of a disk, and with cylin-
— drical symmetry 1in the case of a cir-
cular cylinder. The flow inslde
ABDE is known from.the existing solu-
tions of one-dimensional problems of
\\\\J expansion into a vacuum. One can

A\ X
a4
; — easily determine, for any instant of
\V I time, the shape of the boundaries
/ i\ AE, BD of the region influenced by
/ N the edges of the disk or by the end

T

L
——

faces of the cylinder. Thus, for
, ’ every instant of time, one can calcu-
2" NI late the mass and the kinetic and
\\\\\ ; internal energles of the gas contalned
i

in the one-dimenslonal jet.

i ‘\\*\‘ T~ ™
\\\\*~‘--___ ! e results of calculations for a
| — | thin disk and for a cylinder with large
Y 2 % 5 7 height-to-diameter ratio 1 with
y=%/ are given in Fig.4. The kinetic
Fig. & energy (curves 1, 2, ;) and the inter-
g. nal energy (curves 17, 2‘, 3) are
taken relative to the total initial
energy of the whole gas volume,
Curves 1 refer to a cylinder with helght-to-dlameter ratio ! = 5 and curves
2, 3 refer to disks with diameter-to-thickness ratlos of 7 and 15, respec
tively. The dimensionless time ¢ 1s defined as

(‘*to

. (3.1)

where ¢, 1s the initial velocity of sound at the axls or plane of symmetry
of the initlal volume and 2h 1s the thickness of the disk or the diameter
of the cylinder. In the case of the disk the inltial distribution of the
gas parameters was assumed to be uniform, and 4in the case of the cylinder
the initial distribution was such that the velocitles were proportional to
the coordinate (so-called self-similar distribution [3 to 6].

The last assumption was due to the absence of an analytic solution for
c¢ylindrical expansion in the case of uniform initlal data and 1s justifiled
by the fact (7] that in the one-dimensional expansion into a vacuum of ini-
tially stationary volumes of gas the asymptotic flow 1s weakly dependent on
the initial distribution and 1s determined by the total energy F , mass N,
and entropy functlon p/gﬁ of the gas. As mentioned above, and as can be
seen from Fig.4, the asymptotic character of the one-dimensional flow is
attained very rapidly. Therefore expansion flows with uniform 1initial para-
meter distributions can be approximated with high accuracy by flows with
self-similar initial distributions, where the relatlons between the charac-
teristic parameters (characteristic density, velocity of sound, and dimension)
are determined for the two flows possessing the same energy, mass and entropy.
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For flows wlth plane waves and vy -?A; these relations are

ry = 1.297, ¢ = 1.085¢,, p; = 1.315p, 3.2)
For flows with cylindrical symmetry and vy -?/; these are

ro=1.228r,, ¢ = 1.181c,,  p, = 1.652p, (3.3)

Here the subscripts 2 and 1 refer to the parametérs of the uniform
distribution and to the initlal values of the parameters of the self~simlilar
distribution at the plane or axis of symmetry, respectively.

Calculatlon of the volumes occupled by the one-dimensional and three-
dimensional parts of the flow, in conjunction with the data of Fig.4, indi-
cates that the mean mass and energy densities in the Jjets are significantly
higher than in the remaining part of the volume pccupled by the gas. This
suggests the ldea that the mass and energy in the three~dimensional part of
the flow may be neglected and that the flow may be approximated by the expan-
sion into the vacuum of a one-dimensional jet which exists at some instant %,.

It follows from the data of Fig.4 that, from a certain instant of time on,
the kinetic energy in the jet considerably exceeds the internal energy of the
gas, i.e. the pressure energy. But in that case the calculation of the sub-
sequent expansion into a vacuum of such jets can be carried out by the method
for uniformly expanding layers which has been described above.

let the calculation of the expansion of a one-dimenslonal jet begin at the
time T = #5, and let the coordinates of the gas particles at that time be
x = £ ., All parameters of the one-dimensional flow at the time ¢, can be
expressed in terms of £ and £, by known formulas. At subsequent times
t « T —t, , according to the assumption stated above, the particle veloclty
in the x direction does not vary and, consequently,

r=§-+ u( t)t (3.4
This relation yields Equation

E=E(z t ) (3.9)

As we are considering the expansion of an aggregate of layers which con-
stitute a one~dimensional flow at the time ¢,, then all constants entering
solution (2.5) become functions of & and, in view of (3.5), functions of
x and ¢t ., It is also necessary to pass from the dimensionless variables
of a layer (2.3) to the dimensionless varlables of a disk

c*ta Ty To o po Cp
= e— r=-= =, p o= — P N —_ — 3.6
R TSR 3 W P T, (3.6)

* Px

Finally, in view of the fact that solution {2.8) corresonds not to a uni-
form flow but to a self-simlilar initial distribution, one must take 1into
account the transformation multipliers which follow from relations (3.2) and
(3.3). The expansion into a vacuum of a disk 1s determined by the system of
functions

[ mbn \31 1 ( b \2.’:.2_}3‘3’
ple,r, t)_(t'i-mz I’?—’-‘.[i wia \1+ o/ I

3 ( b >2£L}fﬁﬁ_4 ]r

1
”("'"‘)=[t+m—75 (- 0/ a R

(3.7)

{(r—8&) rn bt
ulg,t) ==, R=Ria—— 73
Here a, » and m depend, according to (2.9}, on k , and ¥, ", ¢,
and w are, in turn, functions of £ = E{x, £; %,) according to (3.55.

An analogous solution for thc expansion into a vacuum of a circular cylin-
der, obtained on the basis of {2.14) by the method of uniformly expanding
layers, 1s
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mbry \3 1 1 b\ Th

P(x)r:t)=(t+w) ﬁl—[i—mzcli(t_}_m) —E;'—J

b )2 ry VRI’/'—iJ
—_— r

1
v(x,r.t)=[t+m—3(t+m ¢y R

(3.8)

u(z, t) = Rl('l,')=R1(a—-'l e )

T
t4o a t+o

The dependence of »r,, a,, w and u on E&(x, t; ¢,) 1s determined from
known solutlions for the corresponding one-dimensional flows and can be signi-
ficantly simplified by approprilate approximations.

The choice of the instant ¢, at which one begins the calculation of the
transverse expansion of the Jet is limited by a relatively narrow range of
values (Fig.4) for which, on one hand, the one-dimensional part of the flow
contains a large part of the total mass and energy as possible and, on the
other hand, the potential energy is sufficiently small as compared with the
kinetic energy. Thils range lies to the right of the value ¢, at which the
kinetic energy attains its maximum.

Taking into account the fact that the actual expansion of the one-dimen-
sional Jet takes place in a region of three-dimensional flow with a flnite
density (which has been neglected in the present method), one may expect that
solutions obtalned for ¢ > t, are a lower bound for the actual asymptotic
distribution of density in the gas.
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