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In this paper we &hall propose an approximate model of uniformly expanding 
layers which, under certain conditions, 
flow problem to certain one- 

reduces three-dlmer)slonal unsteady 
or two-dimensional problems. 

Consider the expansion lntd a vacuum of a gas Jet in which the kinetic 
energy of the particles is large In comparison with the gas Internal energy. 
Let the Initial flow In the Jet be one-dimensional (with plane or cylindrical 
waves) and assume that the dlstrlbutlon of velocity, density and pressure 
along the axis of the jet la given. &en the energy ratio Is as assumed above, 
the subsequent decay of pressure to qero will have little effect on the velo- 
city of the particles in the direction of the initial motion. Only the transverse 
expansion of the jet will be significant. Thus It la natural to make the 
following slmpllfylng assumption: from a certain Instant of time t, on, 
the gas particles move under their own momentum and each particle conserves 
Its velocity. 

Under this assumption, consecutive layers of particles In the jet do not 
Interact with each other and their motions are Independent. Thus it Is suf- 
ficient to solve the problem of the expansion of a gaa in ari infinitely thin 
layer cut out.from the jet. In this oase the pressure and the denelty dls- 
trlbutlon across the layer will be equalized Instantaneously and the velocity 
distribution across the layer will be linear. Such a layer expands uniformly. 

1. The system of coordinates for a two-dimensional uniformly expanding 
1ayLr Is given In Fig. 1. In view of the assumption made above, we have 

Fig. 1 

au a~ ap ap au alo -----= 
&=aZ=YG"3Y=Z-ax 0 (1.1) 

Without loss of generality, one of the bound- 
ing planes of the layer can be the stationary 
plane * - 0 . Let the other plane move In 
the x direction with the velocity u0 and 
let It.8 position at t I 0 be x = 1. Under 
the present assumptions, the particles of the 
layer move In the .r direction under their 
own momentum. The velocity gradient in the 
x direction Is then 

au uo 1 
_=_=_ 
ax Ii- uot t+o ’ 

0 = & (1.2) 
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The velocity cf the particles in the layer 
5 

U=t+o $3) 

Thus the u component of velocity is speciftid. This leads to a slgnl- 
flcant simplification of the three-dimensional unsteady adiabatic flow equa- 
tions. The equations of motion and the adiabatic condition will be the same 
as for two-dimensional flow (in the g.? plane) 

and the equation of continuity differs from that for two-dimensional flow 
only by the presence of a time-dependent term 

(I.9 

The system of coordinates for a cylindrical uniformly expanding layer is 
shown in Fig.2. The surface of the Inner cylinder 

Fig. 2 

has an initial radius X, and.expands with the 
velocity u1 . The corresponding values for the 
outer cylinder are xa and ua . We shall consl- 
der only one-dimensional flows In the layer, for 
which the 2, velocity Is parallel to the genera- 
trix of the cylinder. Furthermore, let us restrict 
the law of expansion of the layer by imposing the 
additional condition 

Xl xa xa - Xl 
--=--E-=0 Ul UZ ua - Ul 

(1.6) 

In cylindrical coordinates (x, 0, r) this gives 

au ap ap au a 
az’az’azear’O, x = 0 (1.7) 

The 1~ velocity of Inertial flow in cylindrical 
expansion, which satisfies the boundary conditions u=ul at x=xl+u,t , 
u-up at x-x,+u,t and condition (1.6) is 

X 

u=tfO (1.8) 

In the case of one-dimensional flow in the direction of the F-axis in a 
uniformly expanding layer, the equation of motion and the adiabatic condition 
are the same as In the case of flow with plane waves, and the equation of 
continuitv is 

1 aP -- 
p at+v3F ( y+g++=o 

The equations of one-dimensional adiabatic gas flow In a uniformly expand- 
ing layer can be written in the general form 

g+ av +$+o, 
Var &~+v7+=0 

$+~+(v-~)~+bP&=O 

(1.10) 

Here v - 1, 2 stands for flows with plane and cylindrical waves, and 
A - 1, 2 for flows In plane and cylindrical layers, respectlyely. 

The cases In which these equations can be solved are the following: 

a) Monatomlc gas, v-6/a. This case can be solved by 
means of the transformation [l and 23 
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t-d Y v’=-------- b b (1.11) 

which is an invariant transformation for three-dimensional unsteady gas 
flows. 9ne can easily verify that for d I - u, transformation (1.11) 
transforms Equations (1.4) and (1.5) and Equations (1.10) with v ~1, X ~2 
into the equations of two- and one-dimensional gas flow, respectively. 

Thus, transformation (1.11) can be used to transform any solution for 
two-dimensional unsteady flow with Y = "/3 into a solution for a uniformly 
expanding plane layer and any one-dimensional plane-wave solution into a one- 
dimensional flow in a cylindrical uniformly expanding layer. 

b) Flow with velocity proportional to 
a coordinate 133 . It can be easily verified that 

1 dtd I” 
VY 

v=--F~T~ P = tA + BQ (Par)] (t + ,)a.~ 

(1.12) 

P - ‘; (t + @Q’ (t@), IL3+v(.y-1) p” - ‘5 = B (t + ~(y-1) 

which is analogous to L.I.Sedov's solution 133, IS an exact solution of (1;LO). 

Here 
‘p 
(nr) is an arbitrary function and A, B are arbitrary constants. 

Solution 1.12) Is a special case of L.V.Ovsiannikov's solution [43, in which 
the velocity components are proportional to the corresponding coordinates. 

c) Isothermal flow of a gas 1. Ln this 
case Equations (1.4), (1.5) or (1.10) can be trnsformed by Leins of the 
transformation 

P = P’ (t + wh, p = p’ (t fi ckp (1.13) 

Into the ordinary equations of two- or one-dimensional isothermal gas flow. 

Note that Equations (1,lO) contain a parameter w with the dimension of 
time, so that self-similar solutions cannot be generalized for the case of 
a uniformly expanding layer. 

2. In the following we shall consider the solutions for certain expansion 
flows in a uniformly expanding layer. 

Consider an expansion flow in which the velocity is Proportional .to the 
coordinate [5]. In the case of cylindrical symmetry with p/ pr = const and 
Y' "/3 this solution is C63 

Here we have introduced the dimensionless variables and Functions (*) 

Cl’TO r0’ vo’ r=----- 
r1' ’ 

r'=--r, v'=,, 
, PO' 

rl Cl p=pl' 

where ' ' are the velocity of sound and the density at 7 = 0 r'= 0 ; 

r1 ' is %e'rpdius of the volume occupied by the gas at the time 7 ='O . 
The plus and minus signs In (2.1) correspond to expanding and converging 
flow, respectively. The function R(7) for Y = "/3 is given in [5j(Flg. 
102, v = 2). Some values of R are 

T=o 0.04 0.17 0.45 0.6 1.0 2.0 
R = 1.0 1.002 1.04 1.28 1.47 2.08 3.92 

Let us introduce the dimensionless variables for a uniformly expanding 

flow 

*) From here on the subscript o shall denote the dimensional variables 
which enter (1.11). 
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wo 
t-- r0 vo 

r1 ' 
r--s PO 

71 
v--s =- 

Cl P 
Pl 

(2.3) 

Here cl, p1 are the velocity of sound and the density at t - 0 , r = 0; 
rI is the radius of the volume occupied by the gas at t I 0 . 

The transformation formulas (1.11) for the dimensionless variables (2.2) 
and (2.3) are 

b= b r mb 
%=a - t+k , r’=m t+k , 

r v=-v*+_ 
t+k t+k ’ (2.4) 

where 
(*) 

k = u&r1 is a known constant, and c, b, m are arbitrary constants 

Solution (2.1), transformed for the case of a uniformly expanding layer, 

IS 

'P (r, t) = (+i"&[+&-&)p$]%, R=R(r)=R(a-&) (2’5) 

Consider, for the case of a uniformly expanding layer, the solution which 
corresponds to the Initial conditions 

v (r, 0) = 0, P (1, 0) = 0, P (0, 0) = 1 

Substitution of (2.5) into the first condition in (2.6) yields 

(2.6) 

f 6 ; I/R;/” - 1 + Ro”fa = 0, Ro=(RL,= R(a - ;) (2.7) 

This condition can be satisfied only if the first term is taken with the 
;;T; *sign. Consequently, this sign should be taken In Equations (2.1) and 

This means that the Initial flow (2.1) represents a flow which con- 
verges towards the axis of symmetry. 

The second and third condltdon in (2.6) lead to the relations 

b2 1 makaRo2 = 1, (mb I kJs = R2 (2.8) 

Equations (2.7),(2.8) determine the relation between the constants m , 
b, R. and the parameter k , viz. 

-‘/a 
( b = k (1 + &)“’ , Ro = (1 + $)*' (2.9) 

Using the relation R(T) one can find [5] the value 7, which corresponds 
to flO, and the value (**) 

a=ro+;=q,+k(i+G, 
2 \” 

The following are some values of a(k) calculated for O< k< 1.3: 

*) If we designate the constants in transformation (1.11) by the subscript 
0 , then 

A=--%$ cl’ ClCl ‘/. 
a=Tao, b- - 

( i 
bo, 

rl’cl’ ‘IS 
rln’ 

m= - 
( 1 rlcl 

In real cases one can specify only the parameters cl, r; and u) = - do 
of the flow in a uniformly expanding layer. 
two-dimensional flow cl', rI', 

The parameters of the Initial 
which undergoes the trnasformation 

b, of transformation (1.11). 
are arbi- 

trary, and so are the parameters co, 
**) As the Initial condition represents a converging flow, the variable 'rg 
should be taken with the minus sign. 
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k=O 0.05 0.1 0.2 0.3 0.5 1.0 1.3 
a = -0.634 -0.315 -0.17 0.013 0.154 0.4 0.95 1.27 

Thus, the expansion flow of a gas in a uniformly expanding two-dimensional 
layer, which satisfies lnlt+al conditions (2.6) Is determlned from Equations 
(2.5) with the minus ~1 
given by Equations (2.9 ‘5” 

and k = ulol/Fl 
,(2.10). 

, and with the constants a, b, m 

!l?he one-dimensional plane-wave flow for p/ py = co& 7 =6/3,. with velo- 
city proportional to the coordinate Is [3 and 6~ 

t dR1 fe-------_‘=_3 V&l’- 1 , 
RI (t) dt R1’JS 

r, (2.11) 

The function RI(T) for y = 
be written in the form C 61 

"/3 is given in (51 (Fig.102, Y = 1) and can 

Equations (2.2) to (2.4) hold for this case. The parameter 

k = xlcl/ rlvl = ocl/ rl (2.13) 

Solution (2.11), transformed for a uniformly expanding layer, is 

~(r, t) = [&-(&ja$l/Rz]r (2.14) 

p(r,f)=(~)S~[1-~~(~)2~]%, R1=Rl(r)=R+$-) 

Consider the uniformly cxpandlng layer solution which satisfies the lnl- 
tlal conditions 

v (r, 0) = 0, p(1, 0) = 0, P(O, 0) = 1 (2.15) 

According to (2.14) these conditions are 

respectively. 
3b2 vRl;18 - 1 = kRI;la, b? ..= m2k2Rlo2, mW = kSRlo 

These equations determine the relation between the constants m , b, RIO 
and the parameter k 

m = (I + &)-'", b = k(1 + &-) , RIO = (1 + &)” (2.16) 

In this case 70 Is given by (2.12) 

Fig. 3 

as an explicit function of .Rm and, 
consequently, It is an explicit func- 
tion of k , viz. 

b2 1 1 
zo=a-~=-y----y 

3k 8ik. 

a(k) = k - & (2.17) 

Thus, the expansion flo# of a gas 
In a uniformly expanding cyllndrlcal 
layer with y - "/= and Initial con- 
ditions (2.15) is determlned by Equa- 
tions (2.14 and relations (2.13), 
(2.16) and t 2.17). 

3. A characteristic feature of gas expansion Into a vacuum Is the rapid 
conversion of potential energy into kinetic energy of the particles. 

In the case of many asymmetric volumes the Initial stages of the expansion 
are sufficiently simple and can be calculated. Thus, if a portion of the 



surface of the volume Is a plane (paralleleplped, disk, finite cone, etc.), 
then the initial stage of the expansion of that part of the volume which 
adjoins that surface is a one-dimensional plane-wave flow, which is subse- 
quently eroded due to the effect of the boundaries of the plane surface. If 
a part of the surface is a circular cylinder or a sphere, then the Initial 
stage of the expansion of the adjoining part of the volume is the correspond- 

ing one-dimensional flow with cylln- 
drical or spherical symmetry. 

Fig.3 represents the Initial stage 
of an expansion flow. This pattern 
can be regarded as the upper half of 
the flow in a meridional cross-section 
of a disk or In a diametral cross- 
section of a circular cylinder. The 
shaded area represents the initial 
volume. occupied by the gas. 

The part ABIN? repesents a one- 
dimensional jet, with-plane waves In 
the case of a disk, and with cylin- 
drical symmetry in the case of a cir- 
cular cylinder. The flow inside 

ABDEls known from.the existing solu- 
tions of one-dimensional problems of 
expansion into a vacuum. One can 
easils determine. for anv instant of 
time,-the shape'of the boundaries 
AE, BD of the region Influenced by 
the edges of the disk or by the end 
faces of the csllnder. Thus. for 
every instant of- time, one can- cslcu- 
late the mass and the kinetic and 
Internal energies of the gas contained 
in the one-dimensional jet. 

The results of calculations for a 
thin disk and for a cyllrderw;thw~;;ge 
height-to-diameter ratio 
v-y3 are given In Flg.4. The kinetic 
energy(curves 1, 2, 3) and the lnter- 
nal energy (curves 1 2' 3’) are 
taken relative to the'to& Initial 
energy of the whole gas volume. . . _ Curves 1 refer to a cylinder with helght-to-diameter ratlo 1 - 3 and curves 

2, 3 refer to disks with diameter-to-thickness ratios of 7 and 15, resper 
tlvely. The dimensionless time t Is defined as 

where O* Is the initial velocity of sound at the axis or plane of symmetry 
of the initial volume and 2h Is the thickness of the disk or the diameter 
of the cylinder. In the case of the disk the initial distribution of the 
gas parameters was assumed to be uniform, and 1n the case of the cylinder 
the initial distribution was such that the velocities were proporfional to 
the coordinate (so-called self-similar distribution [3 to 63. 

The last assumption was due to the absence of an analytic solution for 
cylindrical expinsion In the case of uniform Initial data and is justified 
by the fact [7) that In the one-dimensional expansion Into a vacuum of ini- 
tially stationary volumes of gas the asymptotic flow Is weakly dependent on 
the Initial distribution and Is determined by the total energy E , mass H, 
and entropy function p/ !I' of the gas. As mentioned above, and as can be 
seen from Flg.4, the asymptotic character of the one-dimensional flow is 
attained very rapidly. Therefore expansion flows with uniform Initial para- 
meter distributions can be approximated with high accuracy by flows with 
self-similar initial distributions, where the relations between the charac- 
teristic parameters (characteristic density, velocity of sound, and dimension) 
are determined for the two flows possessing the same energy, mass and entropy. 



1128 V.A. Smirnov 

For flows with plane waves and y =e,$ these relations 

rl = 1.29r,, Cl = 1.095c*, & = 1.315p, 

are 

(3.2) 

For flows with cylindrical symmetry and V -_% these are 

rI = 1.228r,, cI = 1.181c,, pI = 1.652~~ (3.3) 
Here the subscripts 2 and 1 refer to the parameters of the uniform 

distribution and to the initial values of the parameters of the self-similar 
distribution at the plane or axis of symmetry, respectively. 

Calculation of the volumes occupied by the one-dimensional and three- 
dimensional parts of the flow, In conjunction with the data of Flg.4, lndi- 
cates that the mean mass and energy densities in the jets are significantly 
higher than in the remaining part of the volume occupied by the gas. ThlS 
suggests the idea that the mass and energy in the three-dimensional part of 
the flow may be neglected and that the flow may be approximated by the expan- 
sion into the vacuum of a one-dimensional jet which exists at some instant to. 

It follows from the data of Fig.4 that, from a certain Instant of time on, 
the kinetic energy in the jet considerably exceeds the internal energy of the 
gas, i.e. the pressure energy. But In that case the calculation of the sub- 
sequent expansion into a vacuum of such jets can be carried out by the method 
for uniformly expanding layers which has been described above. 

Let the calculation of the expansion of a one-dimensional jet begin at the 
time T = to, and let the coordinates of the gas particles at that time be 
x=5* All parameters of the one-dimensional flow at the time to can be 
expressed in terms of 5 and to by known formulas. At subsequent times 
t-T-&,, according to the assumption stated above, the particle velocity 
in the X direction does not vary and, consequently, 

z = F, + u (E, 4l) t (3.4) 
This relation yields Equation 

E = E (5, 6 &I) (3.5) 

As we are considering the expansion of an aggregate of layers which Con- 
stitute a one-dimensional flow at the tlme t,, then all constants entering 
solution (2.5) become functions of E and, in view of (3.5), fur&ions of 
X and t . It is also necessary to pass from the dimensionless variables 
of a layer (2.3) to the dimensionless variables of a disk 

c,to CO PO t=--- h , I= T, r_!!_ 
h ’ y=---, p==----’ 

_cg 
c* P* c* 

(3.6) 

Finally, in view of the fact that solution (2.5) corresonds not to a uni- 
form flow but to a self-similar Initial distribution, one must take into 
account the transformation multipliers which follow from relations (3.2) and 
(3.3). The expansion into a vacuum of a disk is determined by the system of 
functions 

(3.7) 

Here a, b and m depend, according to 
and w are, in turn, functions of 5 = 5(x, 

An analogous solution for the ex ansion 
der, obtained on the basis of (2.14 P 

Into a vacuum of a ClrCular cylln- 
by the method of uniformly expanding 

layers,, is 
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p (z, r, t) = (S)” &[I - m& ($J2 &I” 

72 (5, r, t) = c VRZ +3(&2$ R;h 1 r 

RI(~)= Rl(o- +&) 
The dependence of rl, cl, u) and u on 5(x, t; to) is determined from 

known solutions for the corresponding one-dimensional flows and can be slgnl- 
flcantly simplified by appropriate approximations. 

The choice of ,the Instant tn at which one benlns the calculation of the 
transverse ex anslon of the jet-is limited by a Felatlvely narrow range of 
values (Fig.4 7 for which, on one hand, the one-dimensional part of the flow 
contains a-large part of-the total mass and energy as possible and, on the 
other h&nd, the potential energy is sufficiently small as compared with the 
kinetic energy. This range lies to the right of the value t, at which the 
kinetic energy attains Its maximum. 

Taking into account the fact that the actual expansion of the one-dlmen- 
slonal Jet takes place in a region of three-dimensional flow'with a finite 
density (which has been neglected In the present method), one may expect that 
solutions obtained for t > t, are a lower bound for the actual asymptotic 
distribution of density In the gas. 
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